Regression Methods for Stochastic Control Problems and Their Convergence Analysis
نویسندگان
چکیده
In this paper we develop several regression algorithms for solving general stochastic optimal control problems via Monte Carlo. This type of algorithms is particularly useful for problems with a high-dimensional state space and complex dependence structure of the underlying Markov process with respect to some control. The main idea behind the algorithms is to simulate a set of trajectories under some reference measure and to use the Bellman principle combined with fast methods for approximating conditional expectations and functional optimization. Theoretical properties of the presented algorithms are investigated and the convergence to the optimal solution is proved under some assumptions. Finally, the presented methods are applied in a numerical example of a high-dimensional controlled Bermudan basket option in a nancial market with a large investor.
منابع مشابه
Effects of Probability Function on the Performance of Stochastic Programming
Stochastic programming is a valuable optimization tool where used when some or all of the design parameters of an optimization problem are defined by stochastic variables rather than by deterministic quantities. Depending on the nature of equations involved in the problem, a stochastic optimization problem is called a stochastic linear or nonlinear programming problem. In this paper,a stochasti...
متن کاملRegression methods for stochastic control problems
In this paper we develop several regression algorithms for solving general stochastic optimal control problems via Monte Carlo. This type of algorithms is particulary useful for problems with high-dimensional state space and complex dependence structure of the underlying Markov process with respect to some control. The main idea of the algorithms is to simulate a set of trajectories under some ...
متن کاملWilson wavelets for solving nonlinear stochastic integral equations
A new computational method based on Wilson wavelets is proposed for solving a class of nonlinear stochastic It^{o}-Volterra integral equations. To do this a new stochastic operational matrix of It^{o} integration for Wilson wavelets is obtained. Block pulse functions (BPFs) and collocation method are used to generate a process to forming this matrix. Using these basis functions and their operat...
متن کاملPareto-optimal Solutions for Multi-objective Optimal Control Problems using Hybrid IWO/PSO Algorithm
Heuristic optimization provides a robust and efficient approach for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier. The convergence rate and suitable diversity of solutions are of great importance for multi-objective evolutionary algorithms. The focu...
متن کاملOptimal Stochastic Switching under Convexity Assumptions
Abstract. We address a method of approximate calculation of optimal control policy applicable to a particular class of stochastic control problems, whose stochastic dynamics exhibit a certain convexity preserving property. Problems of this type appear in many applications and encompass important examples arising in the area of optimal stopping and in the framework of control, based on partial o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Control and Optimization
دوره 48 شماره
صفحات -
تاریخ انتشار 2010